L'articolo si collega al piano di William Bernstein che ha delineato per Business Insider , che dice:
Put equal amounts of that 15% into just three different mutual funds:
• A U.S. total stock market index fund
• An international total stock market index fund
• A U.S. total bond market index fund
Over time, the three funds will grow at different rates, so once per year
you'll adjust their amounts so that they're again equal.
That's it.
Modellando questa strategia di investimento
Scegliendo tre fondi da Google ed eseguendo alcuni numeri.
MUTF: VTSMX Vanguard Total Stock Market Index
MUTF: VGTSX Vanguard Total International Stock Index Fund Investor Shares
MUTF: VBMFX Vanguard Total Bond Market Index Fund Investor Shares
L'indice azionario internazionale risale solo al 29 aprile 1996, quindi è stato modellato un periodo di 21 anni. Basato sul 15% di uno stipendio di 550 dollari al mese con vari aumenti annuali:
annual salary total contributions final investment
rise (%) over 21 years value after 21 years
0 20,790 43,111
1 23,007 46,734
2 25,526 50,791
In generale, questo investimento raddoppia il valore dei contributi in due decenni.
Nota: Le commissioni di ribilanciamento non sono incluse nella simulazione.
Di seguito è riportato il codice utilizzato per eseguire la simulazione. Se avete Mathematica potete provare con diversi fondi.
funds = {"VTSMX", "VGTSX", "VBMFX"};
(* Plotting the fund indices *)
{tsm, ism, tbm} = FinancialData[#, {"April 29, 1996",
DateList[], "Month"}] & /@ funds; DateListPlot[
Transpose[{First /@ #, 100 Last /@ #/#[[1, 2]]}] & /@
{tsm, ism, tbm}, PlotLegends -> funds, PlotLabel ->
"Indices from month-end April 1996 rebased to 100"]
(* Plotting the investment contributions *)
salary = 550;
investment = salary*0.15;
inflation = 2;
nmonths = Length[tsm] - 1;
ny = Quotient[nmonths, 12];
iy = Array[investment/3 (1 + inflation/100)^(# - 1) &, ny];
d = Take[Flatten[ConstantArray[#, 12] & /@ iy], 12 ny];
DateListPlot[Transpose[{Take[First /@ tsm, 12 ny], 3 d}],
PlotLabel -> Row[{"Monthly contributions with ",
inflation, "% inflation - Total = ",
Total[3 d]}], PlotRange -> {Automatic, {0, Automatic}},
PlotMarkers -> {Automatic, 6}, FrameLabel -> {"Time",
Rotate[Style["$", 12], Pi/2]}, ImageSize -> 380]
(* Calculating & plotting the investment values *)
{tsm2, ism2, tbm2} = Take[Ratios@# - 1, 12 ny] & /@
Map[Last, {tsm, ism, tbm}, {2}];
d2 = 0;
ds = {};
eachyear[yr_] := Last /@ Function[series,
AppendTo[ds, Total@Array[(d[[# + 12 (yr - 1)]] +
If[# == 1, d2/3, 0]) Apply[Times,
1 + series[[# + 12 (yr - 1) ;; 12 yr]]] &,
12]]] /@ {tsm2, ism2, tbm2}
vals = Array[(d2 = Total@eachyear[#]) &, ny];
rd = Last /@ Partition[Take[First /@ tsm, {2, 12 ny + 1}], 12];
DateListPlot[Transpose[MapThread[
{{#1, #2[[1]]}, {#1, #2[[2]]}, {#1, #2[[3]]}} &,
{rd, Partition[ds, 3]}]],
PlotMarkers -> {Automatic, 8}, PlotLabel -> Row[{
"Individual fund investment values over ", ny,
" years"}], PlotLegends -> funds, Epilog -> {Red,
Arrowheads[0.06], Arrow[{{{2007, 10, 1}, 12000},
{{2008, 10, 1}, 9000}}]}, FrameLabel -> {"Time",
Rotate[Style["$", 12], Pi/2]}, ImageSize -> 400]
Si noti come l'indice obbligazionario (VBMFX) conservi il valore durante il crash del 2008. Questo illustra la logica della diversificazione tra diversi tipi di fondi.
DateListPlot[Transpose[{rd, vals}],
PlotMarkers -> {Automatic, 8}, PlotLabel -> Row[{
"Total investment value over time - Final value = ",
Last[vals]}], FrameLabel -> {"Time",
Rotate[Style["$", 12], Pi/2]}, ImageSize -> 400]